Сообщений: 6490 | #1 - 26 апреля 2022 в 01:00 | |
С золотым сечением на плоскости вроде как разобрались. По крайней мере, разобрались с золотым сечением в круглых, треугольных и др. изображениях. Вопрос: где находится золотое сечение в пространстве? |
Сообщений: 3746 | #2 - 26 апреля 2022 в 09:54 | |
В додекаэдре, вернее в его звезчатых формах если пространство о котором вы пишете трехмерно Редактировалось: 2 раз (Последний: 26 апреля 2022 в 10:12) |
Сообщений: 6490 | #3 - 26 апреля 2022 в 13:53 | |
Дмитрий Антипов: | В додекаэдре, вернее в его звезчатых формах если пространство о котором вы пишете трехмерно |
Додекаэдр редко встречается в природе именно в силу дисгармонии и неустойчивости. |
Сообщений: 3715 | #4 - 26 апреля 2022 в 15:38 | |
Дмитрий Антипов: | если пространство о котором вы пишете трехмерно |
Хм,.. хорошая ремарка. |
Сообщений: 3746 | #5 - 26 апреля 2022 в 16:59 | |
Сергей Новожилов: | Дмитрий Антипов: | В додекаэдре, вернее в его звезчатых формах если пространство о котором вы пишете трехмерно | Додекаэдр редко встречается в природе именно в силу дисгармонии и неустойчивости. |
Я бы сказал он вообще не встречается в природе, а как и прочие платоновы тела и сама пропорция ЗС существуют только в мире идей |
Сообщений: 3746 | #6 - 27 апреля 2022 в 13:52 | |
Сделаю вброс. Пропорция ЗС тесно связана с пятилучевой симметрией, которая не встречается в неживой природе. Исключения есть, некоторые квазикристаллы обладают ею, но это искусственный объект. Однако в живой природе пятилучевая симметрия встречается, например некоторые цветки, морские звезды. Что думаете об этом? |
Сообщений: 816 | #7 - 27 апреля 2022 в 15:41 | |
Сергей Новожилов: | Вопрос: где находится золотое сечение в пространстве? |
У скульптуров тоже существуют свои правила композиций. К примеру, Давид у Микеланджело имеет несколько бОльшую голову, чем у нормального человека. Это обусловлено тем, что фигура большая, и рассматривая её с маленького человеческого роста, обычная голова казалась бы маленькой. Вот скульптур и сделал её несколько больше. Вот вам и правило. Но зачем путать плоскую живопись и объёмную скульптуру? Это разные виды искусств, каждая со своими правилами. Нет нужды переносить объёмное изображение на плоскость. В старые времена, когда ещё не было фотографии, создать произведение искусства что живописное, что скульптурное, технически было равнозначно. Это сейчас, когда фотография делается одним нажатием пальца, народ начинает озадачиваться - как бы также и объёмное изображение состряпать легко и непринуждённо. |
Сообщений: 3715 | #8 - 27 апреля 2022 в 16:15 | |
Юрий Григорьев: | Нет нужды переносить объёмное изображение на плоскость. |
Ну тогда продайте вашу камеру, а деньги пожертвуйте на благотворительность. Предназначение фотографии и состоит в том, чтобы трёхмерное выразить в двухмерном. |
Сообщений: 6490 | #9 - 27 апреля 2022 в 22:34 | |
Дмитрий Антипов: | Сделаю вброс. Пропорция ЗС тесно связана с пятилучевой симметрией, которая не встречается в неживой природе. Исключения есть, некоторые квазикристаллы обладают ею, но это искусственный объект. Однако в живой природе пятилучевая симметрия встречается, например некоторые цветки, морские звезды. Что думаете об этом? | Ещё я слышал версию, что пятилучевые сердцевинки всех яблок на одной яблоне ориентированы одинаково. Ну, тойсть, повёрнуты в одну сторону, но это не точно. Я думаю, три луча для живой природы - устойчиво, но слишком просто. Семь - интересно, но слишком сложно и неустойчиво. Пять - идеально! |
Сообщений: 3746 | #10 - 28 апреля 2022 в 05:31 | |
Сергей Новожилов: | Ещё я слышал версию, что пятилучевые сердцевинки всех яблок на одной яблоне ориентированы одинаково. Ну, тойсть, повёрнуты в одну сторону, но это не точно. Я думаю, три луча для живой природы - устойчиво, но слишком просто. Семь - интересно, но слишком сложно и неустойчиво. Пять - идеально! |
Ну да, в живой природе встречается определенно. Ориентация может зависеть от направления к свету, но одна симметрия другую не порождает. Нет таких преобразований чтобы объект обладающий, например, 3х-лучевой симметрией перевести в 5ти-лучевую. Предположим, что живая природа — это более высокоорганизованная неживая, то есть состоит из тех же базовых элементов, но иначе связанных. Органические молекулы состоят из тех же атомов обладающих определенной симметрией, которая вероятно определяется свойствами геометрии пространства 3! По этому и формы электронных оболочек в атоме и химические элементы и кристаллические решетки, короче, все очень хорошо сочетается с базовой симметрией и трехмерностью пространства. Но откуда в живой природе появляется другая симметрия более высокого порядка которая не свойственна нашему 3х мерному миру? Тот же вопрос про хиральность органических молекул (способность закручиваться против или по часовой стрелки). Весь мир можно отразить в зеркале и ничего не изменится. Поля, элементарные частицы, атомы... перейдут сами в себя. Однако органические молекулы (например некоторые белки) изменятся в силу своей закрученности. То есть живая природа в отличии от неживой не обладает свойством инвариантности относительно таких преобразований хотя состоит из неживой. И заметьте все упирается в геометрию. Парадокс! Какие мысли возникают? Редактировалось: 2 раз (Последний: 28 апреля 2022 в 05:38) |
Сообщений: 6490 | Дмитрий Антипов: | Но откуда в живой природе появляется другая симметрия более высокого порядка которая не свойственна нашему 3х мерному миру? |
Сначала Вы предположили, что нашему миру свойственна какая-то симметрия, а потом спрашиваете, откуда появляется в этом мире другая симметрия, не совпадающая с вашим предположением? Ваш вопрос прекрасен! Ничто так не отражает ограниченность и предвзятость человеческого разума, как его изначально ошибочные предположения, а затем отстаивание этих предположений, несмотря на всю очевидность их ошибочности! Однако, Дмитрий, мы же о пространстве говорим в этой теме, а эта самая Ваша пятилучевая симметрия - она на плоскости. Если же пять лучей пустить из одной точки в пространстве, да так, чтобы они были равноудалены в пространстве друг от друга, то получится совсем другая конструкция, я даже затрудняюсь сходу визуализировать этого "пятилучевого ежа", в отличие от ежа 4-х или 6-ти- лучевого. Дмитрий Антипов: | Весь мир можно отразить в зеркале и ничего не изменится. Поля, элементарные частицы, атомы... перейдут сами в себя. |
Я не уверен на счет атомов и ещё более элементарных частиц и что кто-то производил их "полное отражение" и что вообще это возможно сделать. По идее, хиральность органических молекул - это готовое экспериментальное подтверждение того, что эл.частицы нельзя "полностью отразить". Возможно, это главный вопрос науки будущего - определить источник и природу той силы, которая различает правое и левое. |
Сообщений: 3746 | Сергей Новожилов: | Ваш вопрос прекрасен! |
Я тоже так считаю. Сергей Новожилов: | Ничто так не отражает ограниченность и предвзятость человеческого разума, как его изначально ошибочные предположения, а затем отстаивание этих предположений, несмотря на всю очевидность их ошибочности! |
Вы не чувствуете разницы между предположением и утверждением? Предположение конечно же допускает ошибочность, но ошибочность опровергается контр примером. Вы такого пока не привели. Сергей Новожилов: | Ваша пятилучевая симметрия - она на плоскости |
Симметрия — это свойство геометрического объекта переходить сам в себя при определенных преобразованиях. Например при отражении относительно прямий. Размерность пространства значения не имеет. Можете хоть в n-мерном пространстве такие классы преобразований вводить и исследовать их свойства. Сергей Новожилов: | Я не уверен на счет атомов и ещё более элементарных частиц и что кто-то производил их "полное отражение" и что вообще это возможно сделать. |
Когда говорят об атомах рассматривают не сами элементарные частицы (точно знать их координату невозможно в силу принципа неопределенности), а волновую функцию, квадрат модуля которой является распределением плотности вероятности нахождения частицы в определенном месте. Если построить такие функции в виде пространственных фигур, то они будут обладать разными симметриями кратными 1, 2 и 3, но не 5! Упаковка атомов в кристаллических решетках и органических молекулах так же подчиняется такой же симметрии. По этому вопрос остается актуальным. Откуда в живой природе 5 лучевая симметрия, если на более низком уровне ее нет? Редактировалось: 2 раз (Последний: 5 мая 2022 в 17:59) |
Сообщений: 6490 | Дмитрий Антипов: | Вы не чувствуете разницы между предположением и утверждением? Предположение конечно же допускает ошибочность, но ошибочность опровергается контр примером. Вы такого пока не привели |
Вы сами его привели, пример с пяти лучами опровергает Ваше предположение о какой-то там непонятной симметрии 3д пространства или чего-то там ещё, чего Вы напредполагали. Если практика не сходится с предположением, то оно ошибочно. Мне и не нужно ничего доказывать и приводить, Вы сами всё это прекрасно сделали. Дмитрий Антипов: | Симметрия — это свойство геометрического объекта переходить сам в себя при определенных преобразованиях. Например при отражении относительно прямий. Размерность пространства значения не имеет. |
То есть, Вы даже не понимаете, что свои 5 лучей нарисовали на плоскости? Ну, ладно продолжайте бегать с этой плоскостью, успокаивая себя тем, что она, эта плоскость, существует в пространстве. Вот только 5 лучей в огрызке яблока возникают не из-за преобразования, а из-за равноудаленности лучей на плоскости. И я уже объяснил, почему их 5. Не нравится объяснение - дайте своё. Дмитрий Антипов: | точно знать их координату невозможно в силу принципа неопределенности |
Ох уж мне эти инженеры - вечно путают причину и следствие! Дмитрий, это не мы не можем знать координату в силу принципа неопределенности, а принцип неопределённости был сформулирован в силу того, что мы не може знать координату. Пока не можем. Потому что вообще не то и не там ищем. Дмитрий Антипов: | Откуда в живой природе 5 лучевая симметрия, если на более низком уровне ее нет? |
А более низким уровнем Вы что называете? Неорганику? Более простую оргнизацию атомов? Ну, так потому и нет, что там все проще - 2, 3 и 4. Возьмите бильярдные шары и попробуйте их скомпоновать на плоскости - звезду из таких шаров никак устойчиво не построить. |
Сообщений: 3746 | Сергей Новожилов: | А более низким уровнем Вы что называете? Неорганику? Более простую оргнизацию атомов? Ну, так потому и нет, что там все проще - 2, 3 и 4. Возьмите бильярдные шары и попробуйте их скомпоновать на плоскости - звезду из таких шаров никак устойчиво не построить. |
Ну наконец-то начали соображать. С атомами сложнее, ну давайте считать их шарами, если вам так проще. Все верно, Сергей. Если на плоскости складывать шары максимально плотно, то будут выполняться условия 3х лучевой симметрии. Можно плотно сложить их в треугольник, шестиугольник, 12-ти угольник... То есть, если через центры этих шаров провести линии, то они будут пересекаться под углом 120 градусов. Если шары так же плотно укладывать в коробку, а потом попытаться через центры шаров провести плоскости, то они тоже будут взаимопересекаться под теми же 3мя углами. Условно 3 взаимопересекающиеся плоскости. Тоже условие выполняется и для гиперсферы. И так далее. Сколько пространственных разрешений не берите, всегда будет получаться 3 взаимопересекающихся линии, плоскости, пространства... У звездочки, пятиугольника, додекаэдра... эти углы 72,... гр. И таких линий, плоскостей и т. д. будет 5. И то что складывается из шаров звездочками и додекаэдрами не сложить. Это свойство самой геометрии. Смекаете? Из шаров 5-тилучевую звездочку не получить, так же как и из атомов. В неживой материи вроде так и есть. А вот в живой встречаются (примеры приводил выше). И еще добавлю. Шар можно рассматривать, как предельное значение многогранника (многогранник с бесконечным числом граней). То есть в шаре реализуется некая оптимальная геометрия и она удивительным образом совпадает с размерностью пространства. 3! Еще раз обращу ваше внимание, Сергей, что симметрия и пространственное разрешение не одно и то же, но совпадает. Случайность? Закономерность? Как считаете? Редактировалось: 2 раз (Последний: 6 мая 2022 в 06:17) |
Сообщений: 6490 | Дмитрий, Вам надо провериться у специалиста. Ибо пургу несёте, понятную только Вам и с полным отсутствием логики. Вот это что такое? - "Если шары так же плотно укладывать в коробку, а потом попытаться через центры шаров провести плоскости, то они тоже будут взаимопересекаться под теми же 3мя углами. Условно 3 взаимопересекающиеся плоскости." ??? А вот из этого: "Шар можно рассматривать, как предельное значение многогранника (многогранник с бесконечным числом граней)" - вообще логически не следует вот это: "в шаре реализуется некая оптимальная геометрия и она удивительным образом совпадает с размерностью пространства. 3!", а Вы поставили между ними союз "То есть". А совпадение "геометрии" с "размерностью" - ... Вы уж меня извините, но я предупреждал, что наркотики не способствуют научно-техническому прогрессу! |
Сообщений: 3746 | Плохо дело! Мне показалось вы начинаете соображать, где искать ЗС в пространстве. Поспешил. Погорячился. Бывает. Похоже у нас тут будет фокусы ЗС в круге, второй сезон. Жаль. Тема могла быть действительно интересной. |
Сообщений: 6490 | Дмитрий Антипов: | Плохо дело! Мне показалось вы начинаете соображать, где искать ЗС в пространстве. Поспешил. Погорячился. Бывает. Похоже у нас тут будет фокусы ЗС в круге, второй сезон. Жаль. Тема могла быть действительно интересной. | Чтобы писать о пространстве, сначала подберите логику там, где её потеряли. А затем попробуйте выйти за пределы плоскостного мышления. С точки зрения пространственного мышления додекаэдр это не двенадцать плоских пятиугольников, а двенадцать равноудалённых в пространстве исходящих из одного центра лучей. Пятиугольники на поверхности - это следствие, а не причина. Поднимитесь над плоскими угольниками да их свойствами и выходите уже, наконец, в пространство! Там другие соотношения и гармонии. |
Сообщений: 6490 | Роман Савин: | Юрий Григорьев: | Нет нужды переносить объёмное изображение на плоскость. | Ну тогда продайте вашу камеру, а деньги пожертвуйте на благотворительность. Предназначение фотографии и состоит в том, чтобы трёхмерное выразить в двухмерном. | Это ещё большой вопрос, трёхмерно наше пространство или... одномерно. Ведь если любую точку в пространстве можно выразить числом, то алгебраически пространство одномерно. |
Сообщений: 3715 | Сергей Новожилов: | Ведь если любую точку в пространстве можно выразить числом, то алгебраически пространство одномерно. | С чего вдруг такой вывод? Или вы переводчика приняли за иностранца? Кстати, в вашем случае тут прямая аналогия с моим примером о предназначении фотографии. Математика - это лишь один из (!!!) способов понять окружающее нас. Этот способ сложен, местами запутан, нередко несовершенен, но и небезынтересен. Как, собственно, и фотография... |
Сообщений: 6490 | Роман Савин: | Сергей Новожилов: | Ведь если любую точку в пространстве можно выразить числом, то алгебраически пространство одномерно. | С чего вдруг такой вывод? Или вы переводчика приняли за иностранца? Кстати, в вашем случае тут прямая аналогия с моим примером о предназначении фотографии. Математика - это лишь один из (!!!) способов понять окружающее нас. Этот способ сложен, местами запутан, нередко несовершенен, но и небезынтересен. Как, собственно, и фотография... | Когда телек смотришь, тоже кажется, что картинка плоская и двумерная, но каждому пикселю присвоен порядковый номер, и эти числа можно расположить на одной прямой, а значит математически, алгебраически, картинка одномерна. На счёт же математики как способа что-то понять, то перефразируя Сократа, математика позволяет понять, что ничего не понятно. |